3.649 \(\int \frac {\cos ^2(c+d x) (A+C \cos ^2(c+d x))}{\sqrt {a+b \cos (c+d x)}} \, dx\)

Optimal. Leaf size=305 \[ -\frac {4 a \left (24 a^2 C+35 A b^2+22 b^2 C\right ) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{105 b^4 d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}+\frac {2 \left (24 a^2 C+5 b^2 (7 A+5 C)\right ) \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{105 b^3 d}+\frac {2 \left (48 a^4 C+2 a^2 b^2 (35 A+16 C)+5 b^4 (7 A+5 C)\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} F\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{105 b^4 d \sqrt {a+b \cos (c+d x)}}-\frac {12 a C \sin (c+d x) \cos (c+d x) \sqrt {a+b \cos (c+d x)}}{35 b^2 d}+\frac {2 C \sin (c+d x) \cos ^2(c+d x) \sqrt {a+b \cos (c+d x)}}{7 b d} \]

[Out]

2/105*(24*a^2*C+5*b^2*(7*A+5*C))*sin(d*x+c)*(a+b*cos(d*x+c))^(1/2)/b^3/d-12/35*a*C*cos(d*x+c)*sin(d*x+c)*(a+b*
cos(d*x+c))^(1/2)/b^2/d+2/7*C*cos(d*x+c)^2*sin(d*x+c)*(a+b*cos(d*x+c))^(1/2)/b/d-4/105*a*(35*A*b^2+24*C*a^2+22
*C*b^2)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2)*(b/(a+b))^(1/2))*
(a+b*cos(d*x+c))^(1/2)/b^4/d/((a+b*cos(d*x+c))/(a+b))^(1/2)+2/105*(48*a^4*C+5*b^4*(7*A+5*C)+2*a^2*b^2*(35*A+16
*C))*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2)*(b/(a+b))^(1/2))*((a
+b*cos(d*x+c))/(a+b))^(1/2)/b^4/d/(a+b*cos(d*x+c))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.59, antiderivative size = 305, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 8, integrand size = 35, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.229, Rules used = {3050, 3049, 3023, 2752, 2663, 2661, 2655, 2653} \[ \frac {2 \left (24 a^2 C+5 b^2 (7 A+5 C)\right ) \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{105 b^3 d}+\frac {2 \left (2 a^2 b^2 (35 A+16 C)+48 a^4 C+5 b^4 (7 A+5 C)\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} F\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{105 b^4 d \sqrt {a+b \cos (c+d x)}}-\frac {4 a \left (24 a^2 C+35 A b^2+22 b^2 C\right ) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{105 b^4 d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}-\frac {12 a C \sin (c+d x) \cos (c+d x) \sqrt {a+b \cos (c+d x)}}{35 b^2 d}+\frac {2 C \sin (c+d x) \cos ^2(c+d x) \sqrt {a+b \cos (c+d x)}}{7 b d} \]

Antiderivative was successfully verified.

[In]

Int[(Cos[c + d*x]^2*(A + C*Cos[c + d*x]^2))/Sqrt[a + b*Cos[c + d*x]],x]

[Out]

(-4*a*(35*A*b^2 + 24*a^2*C + 22*b^2*C)*Sqrt[a + b*Cos[c + d*x]]*EllipticE[(c + d*x)/2, (2*b)/(a + b)])/(105*b^
4*d*Sqrt[(a + b*Cos[c + d*x])/(a + b)]) + (2*(48*a^4*C + 5*b^4*(7*A + 5*C) + 2*a^2*b^2*(35*A + 16*C))*Sqrt[(a
+ b*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*b)/(a + b)])/(105*b^4*d*Sqrt[a + b*Cos[c + d*x]]) + (2*(2
4*a^2*C + 5*b^2*(7*A + 5*C))*Sqrt[a + b*Cos[c + d*x]]*Sin[c + d*x])/(105*b^3*d) - (12*a*C*Cos[c + d*x]*Sqrt[a
+ b*Cos[c + d*x]]*Sin[c + d*x])/(35*b^2*d) + (2*C*Cos[c + d*x]^2*Sqrt[a + b*Cos[c + d*x]]*Sin[c + d*x])/(7*b*d
)

Rule 2653

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*Sqrt[a + b]*EllipticE[(1*(c - Pi/2 + d*x)
)/2, (2*b)/(a + b)])/d, x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2655

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a + b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c +
 d*x])/(a + b)], Int[Sqrt[a/(a + b) + (b*Sin[c + d*x])/(a + b)], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 -
 b^2, 0] &&  !GtQ[a + b, 0]

Rule 2661

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, (2*b)
/(a + b)])/(d*Sqrt[a + b]), x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2663

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[(a + b*Sin[c + d*x])/(a + b)]/Sqrt[a
+ b*Sin[c + d*x]], Int[1/Sqrt[a/(a + b) + (b*Sin[c + d*x])/(a + b)], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a
^2 - b^2, 0] &&  !GtQ[a + b, 0]

Rule 2752

Int[((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])/Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[(b*c
 - a*d)/b, Int[1/Sqrt[a + b*Sin[e + f*x]], x], x] + Dist[d/b, Int[Sqrt[a + b*Sin[e + f*x]], x], x] /; FreeQ[{a
, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0]

Rule 3023

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (
f_.)*(x_)]^2), x_Symbol] :> -Simp[(C*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1))/(b*f*(m + 2)), x] + Dist[1/(b*
(m + 2)), Int[(a + b*Sin[e + f*x])^m*Simp[A*b*(m + 2) + b*C*(m + 1) + (b*B*(m + 2) - a*C)*Sin[e + f*x], x], x]
, x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] &&  !LtQ[m, -1]

Rule 3049

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((A_.) + (B_.)
*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> -Simp[(C*Cos[e + f*x]*(a + b*Sin[e +
 f*x])^m*(c + d*Sin[e + f*x])^(n + 1))/(d*f*(m + n + 2)), x] + Dist[1/(d*(m + n + 2)), Int[(a + b*Sin[e + f*x]
)^(m - 1)*(c + d*Sin[e + f*x])^n*Simp[a*A*d*(m + n + 2) + C*(b*c*m + a*d*(n + 1)) + (d*(A*b + a*B)*(m + n + 2)
 - C*(a*c - b*d*(m + n + 1)))*Sin[e + f*x] + (C*(a*d*m - b*c*(m + 1)) + b*B*d*(m + n + 2))*Sin[e + f*x]^2, x],
 x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2
, 0] && GtQ[m, 0] &&  !(IGtQ[n, 0] && ( !IntegerQ[m] || (EqQ[a, 0] && NeQ[c, 0])))

Rule 3050

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((A_.) + (C_.)
*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> -Simp[(C*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^(n
 + 1))/(d*f*(m + n + 2)), x] + Dist[1/(d*(m + n + 2)), Int[(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^n
*Simp[a*A*d*(m + n + 2) + C*(b*c*m + a*d*(n + 1)) + (A*b*d*(m + n + 2) - C*(a*c - b*d*(m + n + 1)))*Sin[e + f*
x] + C*(a*d*m - b*c*(m + 1))*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, C, n}, x] && NeQ[b*c -
a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 0] &&  !(IGtQ[n, 0] && ( !IntegerQ[m] || (EqQ[a, 0
] && NeQ[c, 0])))

Rubi steps

\begin {align*} \int \frac {\cos ^2(c+d x) \left (A+C \cos ^2(c+d x)\right )}{\sqrt {a+b \cos (c+d x)}} \, dx &=\frac {2 C \cos ^2(c+d x) \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{7 b d}+\frac {2 \int \frac {\cos (c+d x) \left (2 a C+\frac {1}{2} b (7 A+5 C) \cos (c+d x)-3 a C \cos ^2(c+d x)\right )}{\sqrt {a+b \cos (c+d x)}} \, dx}{7 b}\\ &=-\frac {12 a C \cos (c+d x) \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{35 b^2 d}+\frac {2 C \cos ^2(c+d x) \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{7 b d}+\frac {4 \int \frac {-3 a^2 C+\frac {1}{2} a b C \cos (c+d x)+\frac {1}{4} \left (24 a^2 C+5 b^2 (7 A+5 C)\right ) \cos ^2(c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx}{35 b^2}\\ &=\frac {2 \left (24 a^2 C+5 b^2 (7 A+5 C)\right ) \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{105 b^3 d}-\frac {12 a C \cos (c+d x) \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{35 b^2 d}+\frac {2 C \cos ^2(c+d x) \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{7 b d}+\frac {8 \int \frac {\frac {1}{8} b \left (35 A b^2-12 a^2 C+25 b^2 C\right )-\frac {1}{4} a \left (35 A b^2+24 a^2 C+22 b^2 C\right ) \cos (c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx}{105 b^3}\\ &=\frac {2 \left (24 a^2 C+5 b^2 (7 A+5 C)\right ) \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{105 b^3 d}-\frac {12 a C \cos (c+d x) \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{35 b^2 d}+\frac {2 C \cos ^2(c+d x) \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{7 b d}-\frac {\left (2 a \left (35 A b^2+24 a^2 C+22 b^2 C\right )\right ) \int \sqrt {a+b \cos (c+d x)} \, dx}{105 b^4}+\frac {\left (48 a^4 C+5 b^4 (7 A+5 C)+2 a^2 b^2 (35 A+16 C)\right ) \int \frac {1}{\sqrt {a+b \cos (c+d x)}} \, dx}{105 b^4}\\ &=\frac {2 \left (24 a^2 C+5 b^2 (7 A+5 C)\right ) \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{105 b^3 d}-\frac {12 a C \cos (c+d x) \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{35 b^2 d}+\frac {2 C \cos ^2(c+d x) \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{7 b d}-\frac {\left (2 a \left (35 A b^2+24 a^2 C+22 b^2 C\right ) \sqrt {a+b \cos (c+d x)}\right ) \int \sqrt {\frac {a}{a+b}+\frac {b \cos (c+d x)}{a+b}} \, dx}{105 b^4 \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}+\frac {\left (\left (48 a^4 C+5 b^4 (7 A+5 C)+2 a^2 b^2 (35 A+16 C)\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}}\right ) \int \frac {1}{\sqrt {\frac {a}{a+b}+\frac {b \cos (c+d x)}{a+b}}} \, dx}{105 b^4 \sqrt {a+b \cos (c+d x)}}\\ &=-\frac {4 a \left (35 A b^2+24 a^2 C+22 b^2 C\right ) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{105 b^4 d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}+\frac {2 \left (48 a^4 C+5 b^4 (7 A+5 C)+2 a^2 b^2 (35 A+16 C)\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} F\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{105 b^4 d \sqrt {a+b \cos (c+d x)}}+\frac {2 \left (24 a^2 C+5 b^2 (7 A+5 C)\right ) \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{105 b^3 d}-\frac {12 a C \cos (c+d x) \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{35 b^2 d}+\frac {2 C \cos ^2(c+d x) \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{7 b d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.91, size = 217, normalized size = 0.71 \[ \frac {2 b \sin (c+d x) (a+b \cos (c+d x)) \left (48 a^2 C-36 a b C \cos (c+d x)+70 A b^2+15 b^2 C \cos (2 (c+d x))+65 b^2 C\right )+4 \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \left (b \left (-12 a^2 b C+35 A b^3+25 b^3 C\right ) F\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )-2 a \left (24 a^2 C+35 A b^2+22 b^2 C\right ) \left ((a+b) E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )-a F\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )\right )\right )}{210 b^4 d \sqrt {a+b \cos (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[(Cos[c + d*x]^2*(A + C*Cos[c + d*x]^2))/Sqrt[a + b*Cos[c + d*x]],x]

[Out]

(4*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*(b*(35*A*b^3 - 12*a^2*b*C + 25*b^3*C)*EllipticF[(c + d*x)/2, (2*b)/(a +
b)] - 2*a*(35*A*b^2 + 24*a^2*C + 22*b^2*C)*((a + b)*EllipticE[(c + d*x)/2, (2*b)/(a + b)] - a*EllipticF[(c + d
*x)/2, (2*b)/(a + b)])) + 2*b*(a + b*Cos[c + d*x])*(70*A*b^2 + 48*a^2*C + 65*b^2*C - 36*a*b*C*Cos[c + d*x] + 1
5*b^2*C*Cos[2*(c + d*x)])*Sin[c + d*x])/(210*b^4*d*Sqrt[a + b*Cos[c + d*x]])

________________________________________________________________________________________

fricas [F]  time = 0.78, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {C \cos \left (d x + c\right )^{4} + A \cos \left (d x + c\right )^{2}}{\sqrt {b \cos \left (d x + c\right ) + a}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2*(A+C*cos(d*x+c)^2)/(a+b*cos(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

integral((C*cos(d*x + c)^4 + A*cos(d*x + c)^2)/sqrt(b*cos(d*x + c) + a), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (C \cos \left (d x + c\right )^{2} + A\right )} \cos \left (d x + c\right )^{2}}{\sqrt {b \cos \left (d x + c\right ) + a}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2*(A+C*cos(d*x+c)^2)/(a+b*cos(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate((C*cos(d*x + c)^2 + A)*cos(d*x + c)^2/sqrt(b*cos(d*x + c) + a), x)

________________________________________________________________________________________

maple [B]  time = 2.63, size = 1131, normalized size = 3.71 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^2*(A+C*cos(d*x+c)^2)/(a+b*cos(d*x+c))^(1/2),x)

[Out]

-2/105*((2*cos(1/2*d*x+1/2*c)^2*b+a-b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(240*C*b^4*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1
/2*c)^8+(24*C*a*b^3-360*C*b^4)*sin(1/2*d*x+1/2*c)^6*cos(1/2*d*x+1/2*c)+(140*A*b^4+24*C*a^2*b^2-24*C*a*b^3+280*
C*b^4)*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)+(-70*A*a*b^3-70*A*b^4-48*C*a^3*b-12*C*a^2*b^2-44*C*a*b^3-80*C*b
^4)*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)+70*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2
+(a+b)/(a-b))^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a^2*b^2+35*A*b^4*(sin(1/2*d*x+1/2*c)^2)^(
1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))-70*A
*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*EllipticE(cos(1/2*d*x+1/2*c)
,(-2*b/(a-b))^(1/2))*a^2*b^2+70*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(
1/2)*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a*b^3+48*C*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(
1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a^4+32*C*(sin(1/2*d*x+1/2
*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/
2))*a^2*b^2+25*C*b^4*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*Elliptic
F(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))-48*C*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a
+b)/(a-b))^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a^4+48*C*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*b/
(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a^3*b-44*C*(sin
(1/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),(-2*
b/(a-b))^(1/2))*a^2*b^2+44*C*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*
EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a*b^3)/b^4/(-2*sin(1/2*d*x+1/2*c)^4*b+(a+b)*sin(1/2*d*x+1/2*c
)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(-2*sin(1/2*d*x+1/2*c)^2*b+a+b)^(1/2)/d

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (C \cos \left (d x + c\right )^{2} + A\right )} \cos \left (d x + c\right )^{2}}{\sqrt {b \cos \left (d x + c\right ) + a}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2*(A+C*cos(d*x+c)^2)/(a+b*cos(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate((C*cos(d*x + c)^2 + A)*cos(d*x + c)^2/sqrt(b*cos(d*x + c) + a), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {{\cos \left (c+d\,x\right )}^2\,\left (C\,{\cos \left (c+d\,x\right )}^2+A\right )}{\sqrt {a+b\,\cos \left (c+d\,x\right )}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((cos(c + d*x)^2*(A + C*cos(c + d*x)^2))/(a + b*cos(c + d*x))^(1/2),x)

[Out]

int((cos(c + d*x)^2*(A + C*cos(c + d*x)^2))/(a + b*cos(c + d*x))^(1/2), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**2*(A+C*cos(d*x+c)**2)/(a+b*cos(d*x+c))**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________